Tests - Math

From ACSL Category Descriptions
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
TeX Samples
TeX 샘플

nowiki Test

<math>E=mc^2</math>

[math]E=mc^2[/math]

<nowiki><math>E=mc^2</math></nowiki>

<math>E=mc^2</math>

Inequality Sign Test

<math>1<2</math>

[math]1\lt 2[/math]

<math>2>1</math>

[math]2\gt 1[/math]

<math>1\lt 2</math>

[math]1\lt 2[/math]

<math>2\gt 1</math>

[math]2\gt 1[/math]

Inequality Sign Test 2

<math>a<b</math>

[math]a\lt b[/math]

<math>a < b</math>

[math]a \lt b[/math]

<math>a>b</math>

[math]a\gt b[/math]

<math>a > b</math>

[math]a \gt b[/math]

UTF-8 Test

<math>전압 = 전류 \times 저항</math>

[math]전압 = 전류 \times 저항[/math]

<math>저항 = \frac{전압}{전류}</math>

[math]저항 = \frac{전압}{전류}[/math]

<math>償還までの合計利回り =\left(1+\frac{期間利率}{100}\right)^{期間}</math>

[math]償還までの合計利回り =\left(1+\frac{期間利率}{100}\right)^{期間}[/math]

<math>n</math>개의 동전을 던져 앞면 <math>k</math>가 나올 확률 <math>P(E)</math>는?

[math]n[/math]개의 동전을 던져 앞면 [math]k[/math]가 나올 확률 [math]P(E)[/math]는?

The Lorenz Equations

<math>\begin{align}
\dot{x} & = \sigma(y-x) \\
\dot{y} & = \rho x - y - xz \\
\dot{z} & = -\beta z + xy
\end{align}</math>

[math]\begin{align} \dot{x} & = \sigma(y-x) \\ \dot{y} & = \rho x - y - xz \\ \dot{z} & = -\beta z + xy \end{align}[/math]

The Cauchy-Schwarz Inequality

<math>\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)</math>

[math]\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)[/math]

A Cross Product Formula

<math>\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0
\end{vmatrix}</math>

[math]\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix}[/math]

The probability of getting k heads when flipping n coins is

<math>P(E)   = {n \choose k} p^k (1-p)^{ n-k}</math>

[math]P(E) = {n \choose k} p^k (1-p)^{ n-k}[/math]

An Identity of Ramanujan

<math>\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
{1+\frac{e^{-8\pi}} {1+\ldots} } } }</math>

[math]\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } }[/math]

A Rogers-Ramanujan Identity

<math>1 + \frac{q^2}{(1-q)} + \frac{q^6}{(1-q)(1-q^2)} + \cdots
= \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})},
\quad\quad for\,|q|<1.</math>

[math]1 + \frac{q^2}{(1-q)} + \frac{q^6}{(1-q)(1-q^2)} + \cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad for\,|q|\lt 1.[/math]

Maxwell’s Equations

<math>\begin{align}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} & = 0
\end{align}</math>

[math]\begin{align} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{align}[/math]

같이 보기

참고 자료